Single plant
In this example we setup a single plant in a narrow periodic channel to help understand the drag of the kelp on the water
Install dependencies
First we check we have the dependencies installed
using Pkg
pkg"add Oceananigans OceanBioME GiantKelpDynamics CairoMakie JLD2"
Load the packages and setup the models
using Oceananigans, GiantKelpDynamics, OceanBioME, Oceananigans.Units
using OceanBioME: Biogeochemistry
grid = RectilinearGrid(size = (256, 32, 32), extent = (100, 8, 8))
holdfast_x = [20.]
holdfast_y = [4.]
kelp = GiantKelp(; grid,
holdfast_x, holdfast_y,
number_nodes = 8,
kinematics = UtterDenny())
@inline sponge(x, y, z) = ifelse(x < 10, 1, 0)
u = Relaxation(; rate = 1/20, target = 0.1, mask = sponge)
v = Relaxation(; rate = 1/20, mask = sponge)
w = Relaxation(; rate = 1/20, mask = sponge)
model = NonhydrostaticModel(; grid,
biogeochemistry = Biogeochemistry(NothingBGC(),
particles = kelp),
advection = WENO(),
forcing = (; u, v, w),
closure = AnisotropicMinimumDissipation())
NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)
├── grid: 256×32×32 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo
├── timestepper: RungeKutta3TimeStepper
├── advection scheme: WENO{3, Float64, Float32}(order=5)
├── tracers: ()
├── closure: Oceananigans.TurbulenceClosures.AnisotropicMinimumDissipation{Oceananigans.TurbulenceClosures.ExplicitTimeDiscretization, @NamedTuple{}, Float64, Nothing}
├── buoyancy: Nothing
└── coriolis: Nothing
Set the initial positions of the plant nodes (relaxed floating to the surface), and the set an initial water velocity
set!(kelp, positions = (x = [0, 0, 0, 0, 3, 6, 9, 12, 15] .+ 20, y = ones(8) * 4, z = [-8, -5, -2, 0, 0, 0, 0, 0]))
set!(model, u = 0.1)
Setup the simulaiton to save the flow and kelp positions
simulation = Simulation(model, Δt = 0.5, stop_time = 10minutes)
prog(sim) = @info "Completed $(prettytime(time(sim))) in $(sim.model.clock.iteration) steps with Δt = $(prettytime(sim.Δt)) ($(prettytime(minimum(sim.model.biogeochemistry.particles.max_Δt)))))"
simulation.callbacks[:progress] = Callback(prog, IterationInterval(100))
wizard = TimeStepWizard(cfl = 0.5)
simulation.callbacks[:timestep] = Callback(wizard, IterationInterval(10))
simulation.output_writers[:flow] = JLD2Writer(model, model.velocities, overwrite_existing = true, filename = "single_flow.jld2", schedule = TimeInterval(10))
simulation.output_writers[:kelp] = JLD2Writer(model, kelp.positions, overwrite_existing = true, filename = "single_kelp.jld2", schedule = TimeInterval(10))
JLD2Writer scheduled on TimeInterval(10 seconds):
├── filepath: single_kelp.jld2
├── 3 outputs: (x, y, z)
├── array type: Array{Float32}
├── including: [:grid, :coriolis, :buoyancy, :closure]
├── file_splitting: NoFileSplitting
└── file size: 35.6 KiB
Run!
run!(simulation)
[ Info: Initializing simulation...
[ Info: Completed 0 seconds in 0 steps with Δt = 500 ms (1 ms))
[ Info: ... simulation initialization complete (10.951 seconds)
[ Info: Executing initial time step...
[ Info: ... initial time step complete (7.477 seconds).
[ Info: Completed 1.398 minutes in 100 steps with Δt = 1.297 seconds (58.560 ms))
[ Info: Completed 4.089 minutes in 200 steps with Δt = 1.772 seconds (58.560 ms))
[ Info: Completed 6.696 minutes in 300 steps with Δt = 1.785 seconds (58.560 ms))
[ Info: Completed 9.333 minutes in 400 steps with Δt = 1.780 seconds (58.560 ms))
[ Info: Simulation is stopping after running for 8.042 minutes.
[ Info: Simulation time 10 minutes equals or exceeds stop time 10 minutes.
Next we load the data
using CairoMakie, JLD2
u = FieldTimeSeries("single_flow.jld2", "u")
x = load("single_kelp.jld2", "timeseries/x")
y = load("single_kelp.jld2", "timeseries/y")
z = load("single_kelp.jld2", "timeseries/z")
indices = keys(x)
indices = [parse(Int, idx) for idx in indices if idx != "serialized"]
indices = sort(indices)
times = u.times
nothing
Now we can animate the motion of the plant and attenuation of the flow
n = Observable(1)
x_plt = @lift x["$(indices[$n])"][1, :]
y_plt = @lift y["$(indices[$n])"][1, :]
z_plt = @lift z["$(indices[$n])"][1, :]
u_vert = @lift view(u[$n], :, Int(grid.Ny / 2), :)
u_surface = @lift view(u[$n], :, :, grid.Nz)
fig = Figure(size = (1200, 400));
title = @lift "t = $(prettytime(u.times[$n]))"
ax = Axis(fig[1, 1], aspect = DataAspect(); title, ylabel = "z (m)")
hm = heatmap!(ax, u_vert, colormap = :lajolla)
scatter!(ax, x_plt, z_plt, color = :black)
ax = Axis(fig[2, 1], aspect = DataAspect(), xlabel = "x (m)", ylabel = "y (m)")
hm = heatmap!(ax, u_surface, colormap = :lajolla)
scatter!(ax, x_plt, y_plt, color = :black)
record(fig, "single.mp4", 1:length(times); framerate = 10) do i;
n[] = i
end
"single.mp4"
In this video the limitations of the simplified drag stencil can be seen (see previous versions for a more complex stencil). It is better suited to the forest application like in the forest example
This page was generated using Literate.jl.