Single plant
In this example we setup a single plant in a narrow periodic channel to help understand the drag of the kelp on the water
Install dependencies
First we check we have the dependencies installed
using Pkg
pkg"add Oceananigans OceanBioME GiantKelpDynamics CairoMakie JLD2"
Load the packages and setup the models
using Oceananigans, GiantKelpDynamics, OceanBioME, Oceananigans.Units
using OceanBioME: Biogeochemistry
grid = RectilinearGrid(size = (128, 64, 8), extent = (1kilometer, 500, 8))
xc, yc, zc = nodes(grid, Center(), Center(), Center())
x_spacing = xc[27]:xspacings(grid, Center()):xc[38]
y_spacing = yc[27]:yspacings(grid, Center()):yc[38]
holdfast_x = vec([x for x in x_spacing, y in y_spacing])
holdfast_y = vec([y for x in x_spacing, y in y_spacing])
holdfast_z = vec([-8. for x in x_spacing, y in y_spacing])
scalefactor = 1.5 * (xspacings(grid, Center()) * yspacings(grid, Center())) .* ones(length(holdfast_x))
scalefactor = vec([x for x in x_spacing, y in y_spacing])
number_nodes = 2
segment_unstretched_length = [16., 8.]
max_Δt = 1.
kelp = GiantKelp(; grid,
holdfast_x, holdfast_y, holdfast_z,
scalefactor, number_nodes, segment_unstretched_length,
max_Δt,
initial_blade_areas = 3 .* [0.2, 0.8])
@inline sponge(x, y, z) = ifelse(x < 100, 1, 0)
u = Relaxation(; rate = 1/200, target = 0.05, mask = sponge)
v = Relaxation(; rate = 1/200, mask = sponge)
w = Relaxation(; rate = 1/200, mask = sponge)
model = NonhydrostaticModel(; grid,
biogeochemistry = Biogeochemistry(NothingBGC(),
particles = kelp),
advection = WENO(),
forcing = (; u, v, w),
closure = AnisotropicMinimumDissipation())
NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)
├── grid: 128×64×8 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo
├── timestepper: QuasiAdamsBashforth2TimeStepper
├── advection scheme: WENO reconstruction order 5
├── tracers: ()
├── closure: Oceananigans.TurbulenceClosures.AnisotropicMinimumDissipation{Oceananigans.TurbulenceClosures.ExplicitTimeDiscretization, @NamedTuple{}, Float64, Nothing}
├── buoyancy: Nothing
└── coriolis: Nothing
Set the initial positions of the plant nodes (relaxed floating to the surface)
set!(kelp, positions = [0. 0. 8.; 8. 0. 8.])#[13.86 0. 8.; 21.86 0. 8.;])
Sset an initial water velocity with random noise to initial conditions to induce turbulance
u₀(x, y, z) = 0.05 * (1 + 0.001 * randn())
v₀(x, y, z) = 0.001 * randn()
set!(model, u = u₀, v = v₀, w = v₀)
Setup the simulaiton to save the flow and kelp positions
simulation = Simulation(model, Δt = 20, stop_time = 4hours)
prog(sim) = @info "Completed $(prettytime(time(simulation))) in $(simulation.model.clock.iteration) steps with Δt = $(prettytime(simulation.Δt))"
simulation.callbacks[:progress] = Callback(prog, IterationInterval(100))
wizard = TimeStepWizard(cfl = 0.5)
simulation.callbacks[:timestep] = Callback(wizard, IterationInterval(10))
simulation.output_writers[:flow] = JLD2OutputWriter(model, model.velocities, overwrite_existing = true, filename = "forest_flow.jld2", schedule = TimeInterval(2minutes))
simulation.output_writers[:kelp] = JLD2OutputWriter(model, (; positions = kelp.positions), overwrite_existing = true, filename = "forest_kelp.jld2", schedule = TimeInterval(2minutes))
JLD2OutputWriter scheduled on TimeInterval(2 minutes):
├── filepath: ./forest_kelp.jld2
├── 1 outputs: positions
├── array type: Array{Float64}
├── including: [:grid, :coriolis, :buoyancy, :closure]
├── file_splitting: NoFileSplitting
└── file size: 21.1 KiB
Run!
run!(simulation)
[ Info: Initializing simulation...
[ Info: Completed 0 seconds in 0 steps with Δt = 20 seconds
[ Info: ... simulation initialization complete (1.118 seconds)
[ Info: Executing initial time step...
[ Info: ... initial time step complete (4.449 seconds).
[ Info: Completed 50.682 minutes in 100 steps with Δt = 40.936 seconds
[ Info: Completed 1.689 hours in 200 steps with Δt = 39.853 seconds
[ Info: Completed 2.633 hours in 300 steps with Δt = 39.296 seconds
[ Info: Completed 3.655 hours in 400 steps with Δt = 38.261 seconds
[ Info: Simulation is stopping after running for 2.278 minutes.
[ Info: Simulation time 4 hours equals or exceeds stop time 4 hours.
Next we load the data
using CairoMakie, JLD2
u = FieldTimeSeries("forest_flow.jld2", "u")
file = jldopen("forest_kelp.jld2")
iterations = keys(file["timeseries/t"])
positions = [file["timeseries/positions/$it"] for it in iterations]
close(file)
times = u.times
nothing
Now we can animate the motion of the plant and attenuation of the flow
n = Observable(1)
x_position_first = @lift vec([positions[$n][p, 1, 1] for (p, x₀) in enumerate(holdfast_x)])
z_position_first = @lift vec([positions[$n][p, 1, 3] for (p, z₀) in enumerate(holdfast_z)])
abs_x_position_first = @lift vec([positions[$n][p, 1, 1] + x₀ for (p, x₀) in enumerate(holdfast_x)])
abs_z_position_first = @lift vec([positions[$n][p, 1, 3] + z₀ for (p, z₀) in enumerate(holdfast_z)])
x_position_ends = @lift vec([positions[$n][p, 2, 1] for (p, x₀) in enumerate(holdfast_x)])
y_position_ends = @lift vec([positions[$n][p, 2, 2] for (p, y₀) in enumerate(holdfast_y)])
rel_x_position_ends = @lift vec([positions[$n][p, 2, 1] - positions[$n][p, 1, 1] for (p, x₀) in enumerate(holdfast_x)])
rel_z_position_ends = @lift vec([positions[$n][p, 2, 3] - positions[$n][p, 1, 3] for (p, z₀) in enumerate(holdfast_z)])
u_vert = @lift interior(u[$n], :, Int(grid.Ny/2), :) .- 0.05
u_surface = @lift interior(u[$n], :, :, grid.Nz) .- 0.05
u_lims = (-0.06, 0.06)
xf, yc, zc = nodes(u.grid, Face(), Center(), Center())
fig = Figure(resolution = (1200, 800));
title = @lift "t = $(prettytime(u.times[$n]))"
ax = Axis(fig[1:3, 1], aspect = DataAspect(); title, ylabel = "y (m)")
hm = heatmap!(ax, xf, yc, u_surface, colorrange = u_lims, colormap = Reverse(:roma))
arrows!(ax, holdfast_x, holdfast_y, x_position_ends, y_position_ends, color = :black)
ax = Axis(fig[4, 1], limits = (190, 350, -8, 0), aspect = AxisAspect(15), xlabel = "x (m)", ylabel = "z (m)")
hm = heatmap!(ax, xf, zc, u_vert, colorrange = u_lims, colormap = Reverse(:roma))
Colorbar(fig[1:4, 2], hm, label = "Velocity anomaly (m / s)")
arrows!(ax, holdfast_x, holdfast_z, x_position_first, z_position_first, color = :black)
arrows!(ax, abs_x_position_first, abs_z_position_first, rel_x_position_ends, rel_z_position_ends, color = :black)
record(fig, "forest.mp4", 1:length(times); framerate = 10) do i;
n[] = i
end
"forest.mp4"
In this video the limitations of the simplified drag stencil can be seen (see previous versions for a more complex stencil). It is better suited to the forest application like in the forest example
This page was generated using Literate.jl.